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" The PEGE is consistent and asymptotically normal under conditions more
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widely used Kaplan-Meier estimator (KME) are asymptotically equivalent and
generally interlace, the PEGE is expected to perform better than the KME in
terms of small sample properties.

The PEGE is attractive to users because it is computationally simple and
realistic in that it decreases at every possible failure time: it therefore
not only has the appearance of a survival function, but also provides a realistic
estimate of the failure rate function. The KME, in contrast, is a step function.
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Section 1: Introduction and Summary

The problem of estimating survival probabilities from incomplete data is

The general situation is described as follows. The variable of interest is the
lifespan of some unit: the investigator wishes to estimate the probability of
survival beyond any given time. To this end, n identical units are placed

"'on test". Each item is either observed until failure, resulting in an uncen-
sored observation, or is removed from the test before failure, resulting in a
censored observation. Thus the data available consist of a number of lifelengths

and a number of truncated lifelengths: the statistical problem is to estimate

the probability distribution of the lifelengths.

according to the restrictiveness of the model assumed and the type of information

utilized. At one extreme are purely parametric procedures, which involve

assuming that the underlying life distribution belongs to a specific parametric
family. These procedures utilize interval information. The Bayesian estimator
described by Susarla and Van Ryzin (1976) makes allowance for both parametric
and nonparametric models: the type of information utilized depends on the
assumptions about the prior distribution. As our approach to the problem is
neither parametric nor Bayesian, we do not consider these procedures further but
concentrate on nonparametric procedures.

Nonparametric procedures range in sophistication from the well-known
actuarial estimator, which is a step function constructed from ordinal infor-
mation alone, to the piecewise polynomial estimators of Whittemore and Keller

(1983) that utilize interval information. The most widely used nonparametric

estimators are those of Kaplan and Meier (1958) and Nelson (1969). These

well known in the fields of reliability, medicine, biometry and actuarial science.

The various statistical approaches to the problem can generally be classified
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We describe a procedure that uses incomplete data to estimate failure rate
and survival functions. Although the procedure is designed for discrete distri-
butions, it applies in the continuous case also.

Our description is expository and therefore contains no proofs: they are

provided by Mimmack (1985).

The procedure is based on the assumption of a piecewise constant failure

rate. The resultant survival function estimator is a piecewise geometric fumnction,

denoted the Piecewise Geometric Estimator (PEGE). The PEGE is the discrete ver-
sion of the piecewise exponential estimators proposed independently by Kitchin, -
Langberg and Proschan (1983) and Whittemore and Keller (1983), and it is a
generalization of an estimator of Umholtz (1984) who considers complete data
taken from an exponential distribution.

The PEGE is consistent and asymptotically normal under conditions more
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general than those of the model of random censorship. Although the PEGE and the R
i

widely used Kaplan-Meier estimator (KME) are asymptotically equivalent and -
generally interlace, the PEGE is expected to perform better than the KME in
terms of small sample properties. E?f
The PEGE is attractive to users because it is computationally simple and o -3
realistic in that it decreases at every possible failure time: it therefore not n’?
“
g

only has the appearance of a survival function, but also provides a realistic ~

estimate of the failure rate function. The KME, in contrast, is a step function. R




(RN C S 4P -0 G P i S 0 SOR ST ARA SEN S R S AL VAR N S A Al & Lol Sl -t Al A Sk Al i S Andad il ek S f Aal Al Al St

- Coae AT e T T Pl M-t

estimators are also step functions constructed from ordinal information. Their
properties are described by Efron (1967), Breslow and Crowley (1974), Petersen
(1977), Aalen (1976, 1978), Kitchin, Langberg and Proschan (1983), Nelson (1972),
Fleming and Harrington (1979), and Chen, Hollander and Langberg (1982).

One of the by-products of the estimation process is an estimate of the
failure rate function: here, another issue is raised. It is evident that sur-
vival function estimators that are step functions do not provide useful failure
rate function estimators: Miller (1981) mentions smoothing the Kaplan-Meier
estimator for this reason and summarizes the development of other survival func-
tion estimators that may be obtained by considering a special case of the regres-
sion model of Cox (1972). These estimators generally correspond to failure rate
function estimators that are step functions and utilize at most part (but not all)
of the interval information contained in the data. Whittemore and Keller (1983)
give several more refined failure rate function estimators that are step functions
and utilize full interval information. They also describe even more complex
estimators that utilize full interval information: however, these are not compu-
tationally convenient compared with their simpler estimators. It seems, from
their work, that a successful rival of the Kaplan-Meier estimator should be only
marginally more complex than it (so as to be computationally convenient and yet
yield a useful failure rate function estimator) and also should utilize more than
ordinal information.

In Section 2, we propose an estimator that not only provides a reasonable
failure rate function estimator but also utilizes interval information. More-
over, it is computationally simple. Our estimator is a discrete counterpart of
two versions of a continuous estimator proposed independently by Kitchin, Langberg
and Proschan (1983) and Whittemore and Keller (1983). The motivation for the

construction of our estimator is the same as that of the former authors, and our
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model is the discrete version of theirs: in contrast, the latter authors assune
the more restrictive model of random censorship and obtain their estimator by
the method of maximum likelihood. This provides an alternative method of deriv-
ing our estimator.

The remaining sections are concerned with properties of our estimator. As
this presentation is expository, proofs are omitted: Mimmack (1985) provides
proofs.

In Section 3, we explore the asymptotic properties of our estimator under

increasingly restrictive models. Our estimator is strongly consistent and

asymptotically normal under conditions more general than those typically assumed.
. Section 4 deals with the relationships among our estimator, the Kaplan-
#‘ Meier estimator, and the above-mentioned estimator of Kitchin et al. and
Whittemore and Keller. The section ends with an example using real data.

In Section 5, we continue the comparison of the new estimator and the

Kaplan-Meier estimator: since the properties of the new estimator are expected

of simulation studies designed to investigate the small sample behaviour of
these estimators. We also present the results of a Monte Carlo pilot study

4

b

:} to resemble those of its continuous counterparts, we discuss the implications
P"

4

{ . . . . .

! designed to investigate the small sample properties of our estimator.

!

Section 2: Preliminaries.

In this section we formulate the problem in statistical terms and define
our estimator.
]f Let X denote the lifelength of a randomly chosen unit, where X has distri-
bution function G. Suppose that n identical items are placed on test. The

resultant sample consists of the pairs (21,61), ceey (Zn,Gn), where Zi represents

‘~.~.~.~.-._ ) _....._._..._..._-._._“ .‘ .‘ _.._-,‘.
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the time for which unit i is observed and Gi indicates whether unit i fails
while under observation or is removed from the test before failure. Symbolically .

fori=1, ..., n, we have:

<
n

lifelength of unit i, where Xi has distribution G,

i

Yi = time to censorship of unit i,
z, = min(X,,Y,),

Gi = I(xisYi).

(Xl,Yl), cens (xn,Yn) are assumed to be independent random pairs. Elements
of a pair Xi and Yi, where i = 1, ..., n, are not assumed to be independent.

We assume that the lifelength and censoring random variables are discrete.
Let X = {xl,xz,...} denote the set of possible values of X and ¥ = {yl,yz,...}
denote the union of the sets of possible values of Yl, Yz, ..., where ¥ c X,

The survival probabilities of interest are denoted P(X> xk), k=1,2, ...,
where P(x>xk) = C(xk) =1 - G(xk), k=1,2, ... .

It is evident that this formulation differs from that of the model of
random censorship which is generally assumed in the literature, and in parti-
cular, by Whittemore and Keller (1983). These authors assume that the lifelength
and censoring random variables are continuous, that the corresponding pairs Xi
and Yi’ where i = 1, 2, ..., are independent, and that the censoring random vari-
ables are identically distributed. Although Kaplan and Meier (1958) assume
only independence between corresponding lifelength and censoring random variables,
Breslow and Crowley (1974), Petersen (1977), Aalen (1975, 1978), and others --
all of whom describe the properties of the Kaplan-Meier estimator -- assume also
that the censoring random variables are identically distributed. Our formulation
is the discrete counterpart of that of Kitchin, Langberg and Proschan (1983):

likewise, our estimator is the discrete counterpart of theirs.

.............
...........................................
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Before describing our estimator, we give the notation required.
Let n, be the random number of distinct uncensored observations in the

sample and let tl < t2 < ... < tn1 denote these distinct observed failure

times, with to = 0. Let n, be the random number of distinct censored obser-

vations in the sample and let S] €5y < ... < snZ denote these times, with

s. = 0.

0

Let Di be the number of failures observed at time ti:

6j=1) fori=1, ..., n,.
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Let Ci be the number of censored observations equal to s;¢
n
c, = j§11(25=si' 8;=0)  for i =1, ..., n,.

Let ?n(t) =1 - Fn(t) denote the proportion of observations that

exceed t:

no~19

= 1
Ffal®) =3

I(Zj>t) for t ¢ [0,=).
j

1

Let Fi(t) denote the proportion of failures observed at or before t:

n
1 1 _ B
F(t) = E-jzlx(szt, 5j_1) for t € (0,o).

Let Ti be a measure of the total time on test in the interval

(t J:

i-1°%4
Ti = #{m: ti-l <xmsti} (nFn(ti) + Di)

+ z #{m: t..

k: <s, <t.

<xmssk}ck fori=1, ..., n,
:t. <
i-1 k77

1

where #A denotes the cardinality of the set A.
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f1{ failure and censoring random variables are lattice random variables, then

Ti is the total time on test in (ti_l,ti

by one unit whenever an item on test survives an interval of the form

J. In general, however, T, increases

- < . s .
(xj-l’ij' where ti-l < xj_1 < xj < ti, irrespective of the distance between

X, , and x..)
j-1 j
We now construct our estimator. Expressing the survival function G in

terms of the failure rates P(X = xklxzxk), k=1, 2, ..., we have:

k
2.1 P(X = -P(X=x.|Xzx, £ = ces
(2.1) (%) JE“ (X=x;|X2x)]  fork =1, 2,

It is evident from (2.1) that we may estimate our survival function at
X from estimates of the failure rates at X1s Xys eeny Xpo In the experimental

situation, failures are not observed at all the times Xy, X so specific

99 e
information about the failure rates at many of the possible failure times is
not available., Having observed failures at tl, to, oot tnl, we find it
simple to estimate the failure rates P(X-= tilxzti), i=1, ..., n,. However,
the question of how to estimate the failure rates at the intervening possible
failure times requires special consideration.

One approach -- that of Kaplan and Meier (1958), Nelson (1969) and
others - - is to estimate the failure rates at these intervening times as zero
since no failures are observed then. However, not observing failures at
some possible failure times may be a result of being in an experimental situ-
ation rather than evidence of very small failure rates at these times, so we
discard this approach and consider nonzero estimates.

It is reasonable to assume that the underlying process possesses an

element of continuity in that adjacent failure rates do not differ radically

R L TR VR P N .
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from one another. Thus we consider using the estimate of the failure rate at
ti to estimate the failure rate at each of the possible failure times between

ti-l and ti, where i = 1, ..., n,. We are therefore assuming that our approx-

imating distribution has a constant failure rate between the times at which

failures are observed -- that is:

2.2) P(x= xk|X2xk) = ﬁi for t.g <X <t

where
q; = P(X= ti|X2ti) fori=1, ..., n..

Substituting (£.2) into (2.1), we obtain:

h{m:ti_1<xm5xk} ifﬁ

R {m:t. ,<x <t.}
(2.3)  P(Xx) = (1-&1)

-~ # 1
(l_q.) J— m J
=1

for ti—l <X < ti’ i=1, ...,n

We note that the property of having constant failure rate on X character-
izes a family of geometric distributions defined on X. In particular, the

G

failure rates Qs -ees A identify ny peometric distributions Gl’ cees G
1 1

defined on X. The survival functions, G Cn , have the geometric form:

17 o

(2.4)  §(x) = (1-q)" fork=1,2, ...andi=1 ..., n.

Inspection of (2.3) and (2.4) reveals that our estimating function is

constructed from the geometric survival functions G Py Cn , where éi is used

1 1

in the interval (ti-l’ti]’ i=1, ..., n,. Consequently, the estimator (2.3)

is called the Piecewise Geometric Estimator (PEGE).
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It remains to define estimators of the failure rates Qus eves Q-
1
This was originally done by separately obtaining the maximum likelihood

estimators of the parameters of n, truncated geometric distributions: the pro-

1
cedure is outlined at a later stage because it utilizes the geometric structure
of (2.3) and therefore provides further motivation for the name '"PEGE". A

more straightforward but less appealing approach is to obtain the maximum like-

lihood estimates of Qps +o+s A directly: denoting by L the likelihood of
1

the sample, we have:

! D, "2 C.
L= { JTIP(X=t,)] TTP(x>s.31 7} |
i=1 1 j=1 ]

Substituting (2.3) into this expression and differentiating yields the unique

maximum likelihood estimates

q; = Di/Ti’ i=1, ..., n,.

Substituting 51’ ceey an into (2.3), we finally obtain our estimator, formally
1

defined as follows.

Definition 2.1. The Piecewise Geometric Estimator (PEGE) of the survival

function of the lifelength random variable X is defined as follows:

(

1 for X, < 0 or n, = 0.

#{m:t. ,<x_<x,} i-1 #{m:t, ,<x_st.}
(1-D,/T.) -1k T -0/t -1 m

i’ i . J
j=1
ﬁ(X>xk) -] for ti-l <X < t., 1= 1, ..., n, ny > 0
In
1 #{m:t,  <x s<t.}

1T (1-D./T.) j-17"m)
j=1 J 3
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The alternative derivation of the PEGE emphasizes its geometric structuic.
it turns out that 61, cees a“l defined above are maximum likelihood estimators
of the parameters of the truncated geometric distributions G¥, ..., G; defined

1
below,

Fori=1, ..., n, we formulate the following definitions:

Let Ni = #{m: ti_1<xm5ti} be the number of possible times of failure in

the interval (ti_l,ti] and let X; be the number of possible times of failure

that a unit of age ti-l survives -~ that is,

X; = number of trials to failure of a unit of age ti-l’
where the possible values of X; are assumed to be 1, 2, ..., Ni’ N;. The
distribution G; of X{ is then given by:

G4 (k) = (1-q.)% fork =1, 2 N

i i 3 S vees o
Cx(N*tY =
Gi(Ni) = 0,
The information available for estimating Q consists of nFn(ti_l)

observations on X;: of these, Di are equal to Ni’ n?n(ti) are equal to N;,
and for all sj in the interval (ti_l,ti], Cj are equal to the number

#{m: t. 1<xﬂlssj}. The resultant maximum likelihood estimator of a; is

precisely &i defined above.
It is evident that the estimators &1, cees &nl have the form of the usual

maximum likelihood estimator of a geometric parameter -- that is,

number of failures observed

Estimated failure rate = Total time on Test .

Moreover, we note that this is the form of the failure rate estimators in the

intervals (to,tll, cens (tn ,°) defined for the Piecewise Exponential Estimator
1

(PEXE) of Kitchin, Langberg and Proschan (1983). In terms of our notation

{modified for continuity), the PEXE is defined as follows:
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1 for t < 0 or n = 0

»

i-1
exp[—(t-ti-l)ii] }];exp[-(tj-tj_l)kj]

1 <t < ti’ i=1, ..., n

Lol i

(2.5) P*(X>t) = ﬁ for t, .

"
-(t.-t. )},
;Egexp[ (tJ tJ_l) J]

Py

fort>t ,n
n

: 11
\

>0,

where
ii = l/Yl for i = 1' seny nl,
t.
1 -
Y, = / nf_(u)du fori=1, ..., n;.
L 1
o

Fori=1, ..., n, Ai is the failure rate in the interval (ti-l’

the total time on test in this interval.

ti] and y; is

The PEXE is a piecewise exponential function because its construction
is based on the assumption of constant failure rate between observed failures:
just as a constant discrete failure rate characterizes a geometric distribution
so a constant continuous failure rate characterizes an exponential distribution.
Thus the PEGE is the discrete counterpart of the PEXE.

Returning to our introductory discussion about the desirable features
of survival function estimators, we now compare the PEGE with other estimators
in terms of these and other features.

First, the PEGE is intuitively pleasing because it reflects the continuity

inherent in any life process. The Kaplan-Meier and other estimators that are

step functions do not have this property.
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Second, we note that the PEGE utilizes interval information from both
censored and uncensored observations. It is therefore more sophisticated than
the Kaplan-Meier and Nelson estimators. Moreover, none of the estimators of
Whittemore and Keller utilizes more information than does the PEGE.

Third, the PEGE provides a simple, useful estimator of the failure rate
function. While this estimator is naive compared with the nonlinear estimators
of Whittemore and Keller, the PEGE has the advantage of being simple enough to
calculate by hand -- moreover it requires only marginally more computational
effort than does the Kaplan-Meier estimator.

Regarding the applicability of the PEGE, we note that use of the PEGE
is not restricted to discrete distributions because it can be easily modified
by linear interpolation or by being defined as continuous wherever necessary.
This is theoretically justified by the fact that the integer part of an exponen-
tial random variable has a geometric distribution: by defining the PEGE to be
continuous, we are merely defining a variant of the PEXE. The properties of
this estimator follow immediately from those of the PEXE.

Finally, apart from being intuitively pleasing, the form of the PEGE
allows reasonable estimates of both the survival function and its percentiles.
The Kaplan-Meier estimator is known to overestimate because of its step function
form. We show in a later section that the PEGE tends to be less than the
Kaplan-Meier estimator, and therefore the PEGE may be more accurate than the
Kaplan-Meier estimator. Whittemore and Keller give some favourable indications
in this respect. They define three survival function estimators that have
constant failure rate between observed failure times. One of these is the
PEXE, modified for ties in the data: the form of the failure rate estimator

is the same as the form of the PEGE failure rate estimator -- specifically,
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fori=1, ..., n,:
1
number of failures observed at ti
1= - - .
total time on test during (ti-l’ti]

(2.6) Estimated failure rate in (ti_l,ti

The second of these estimators is defined instead on intervals of the form

[t ti): fori=1, ..., n, the failure rate estimator has the form:

i-1?
number of failures observed at ti-l
_1 lti)

2.7) Estimated failure rate in [t, t.)= - :
(2.7) i-1°%) total time on test during [ti

The third of these estimators is obtained from the average of the two failure
rate estimators described by (2.6) and (2.7).

In a simulation study to investigate the small sample properties of these
three estimators, Whittemore and Keller find that the first estimator tends to
underestimate the survival function while the second tends to overestimate the
survival function. From these results, we expect the PEGE to underestimate the
survival function and its percentiles. Whittemore and Keller do not record
further results for the first two estimators: however, they do indicate that,
in terms of bias at extreme percentiles, variance and mean square error, the
third estimator tends to be better than the Kaplan-Meier estimator.

The implications for the discrete version of the third estimator are that,
in terms of bias, variance and mean square error, it will compare favourably with
the Kaplan-Meier estimator. An unanswered question is whether the performance
of this estimator is so superior to the performance of the PEGE as to warrant

the additional computational effort required for the former.

Section 3: Asymntotic Properties of the PEGE.

This section treats the asymptotic properties of the PEGE and of the

corresponding failure rate function estimator. The properties of primary
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interest are those of consistency and asymptotic normality: secondary issues

are asymptotic bias and asymptotic correlation.

Initially considering a very general model, we obtain the limiting function
of the PEGE and show that the sequences (P (X>x )}’ and {ﬁn(x=kuszk)}:=1
converge in distribution to Gaussian sequences. We then explore the effects of
making various assumptions about the lifelength and cemsoring random variables.
Under the most general model, the PEGE is not consistent and the failure rate
estimators are not asymptotically uncorrelated: a sufficient condition for
consistency is independence between corresponding 1lifelength and censoring
random variables, and a sufficient condition for asymptotically independent
failure rate estimators is that the censoring random variables be identically
distributed. However, it is not necessary to impose both of these conditions
in order to ensure both consistency and asymptotic independence of the failure
rate estimators: relaxing the condition of independent lifelength and censoring
random variables, we give conditions under which both desirable properties are
obtained.

Before investigating the asymptotic properties of the PEGE, we describe
the theoretical framework of the problem, give some notation, and present a
preliminary result that facilitates the exploration of the asymptotic properties
of the PEGE.

The probability space (Q,A,P) on which all of the lifelength and censoring
random variables are defined is envisaged as the infinite product probability
space that may be constructed in the usual way from the sequence of probability
spaces corresponding to the sequence of independent random pairs (XI,YI),

(XZ’YZ)’ ... . Thus Q consists of all possible sequences of pairs of outcomes

corresponding to pairs of realizations in XxY: the first member of each pair
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corresponds to failure at a particular time and the second member of each pair

corresponds to censorship at a particular time -- that is, for each w in @,

k=1,2, ...and j=1,2, ...:

9 (YD) = 04 (@),Y; (@) = (x,y;) if the it element of the

i. infinite sequence w is the pair of outcomes corresponding to

failure at X and censorship at yj.

i  The argument w is omitted wherever possible.
i: Two conditions are imposed on the random pairs (XI’YI)’ (Xz,YZ), ceel
L (Al) There is a distribution function F such that

n
.1
lim — J P(Z.sx,) = F(x,) fork=1,2, ... .
o n is1 ik *x

(A2) There is a subdistribution function Fl such that

1 1 _
lim = Zp(z (S%, 6:=1) = F(x) fork=1,2, ...
n» - i=]

It is evident that a sufficient condition for (Al) and (A2) is that the

censoring random variables be identically distributed.

Definitions of symbols used in this section are given below. Assumptions

(Al) and (A2) ensure the existence of the limits defined.

Let Pki = P(Zi=xk, Gi=1) fork=1, 2, .andi=1, ..., n,
Rki = P(Z, =% Gi=0) fork =1, 2, .and i =1, , n,
1 ¢ 1 1
P, = lim = Zp.ki=p (x)-F(x_,) fork=1,2, ...,

n-> i=1

c1nl § i}
R, = ;:: E'ileki fork =1,2, ... .

...........................................
WAL AR
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The proposition below is fundamental: it asserts that, with probability
one, as the sample size increases to infinity, at least one failure is observed
at every possible value of the lifelength random variable. First, we need a

definition.

L-
FI Definition 3.1. Let 9* c Q be the set of infinite sequences which contain, for
each possible failure time, at least one element corresponding to the outcome of

observing failure at that time -- that is,

S Q* = {w: (vk) (3n) Xn(w) = X Yn(m) 2 xk}.

Proposition 3.2. P(Q*) = 1.

The proposition is proven by showing that the set of infinite sequences
that do not contain at least one element corresponding to the outcome of

observing failure at each possible failure time X has probability zero --

that is,
n ¢
Pidlim n {X.=x,, Y.2x,} 1=0fork =1, 2, ...
s j=p L o T3
As the pairs (Xl’Yl)’ (XZ’YZ)’ ... are independent, this is equivalent to

proving the following equality:

n
(3.1 iii J];(1- P(X;=x;, Y,2x))

0 forks=1, 2, ...

Since TT'(1-pi) = 0 if and only if § p.
i=1 i=1 *

probabilities, and since (A2) implies that

© .
®, where {pi}i=1 is any sequence of

I P(X;=x,, Y,2x) == for k = 1, 2, ..., we have (3.1).
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The importance of the preceding proposition lies in the simplifications
it allows. It turns out that, on Q* and for n large enough, the PEGE may
be expressed in simple terms of functions that have well-known convergence
properties. Since P(Q*) = 1, we need consider the asymptotic properties of
the PEGE on Q* alone: these properties are easily obtained from those of the
well-known functions.

In order to express the PEGE in this convenient way, we view the estimation
procedure in an asymptotic context.

Suppose w is chosen arbitrarily from Q@*. Then, for each k, there is an
N (depending on k and w) such that Xi(w) = xj and Yi(w) P xj forj=1, ...,
k and some i < N. Consequently, for n 2 N, the smallest k distinct observed
failure times tl’ eeey tk are merely Xys voes X and, since the set of possible
censoring times is contained in X, the smallest k distinct observed times are

also x » X The first k intervals between observed failure times are

1, *® 0o 8
simply (0,x1), (xl,le, cees (kuI,xk], and the function Ti,n defined on the
ith interval is given by the number of units on test just before the end of the
ith interval -- that is,
(3.2) Ti,n = nFn(xi) = nFn(xi-l) fori=1, ..., kand n 2 N,

Likewise, we express the function Di n defined on the ith interval in terms
H
1

of the empirical subdistribution function F as follows.

(3.3) Di,n = n[F;(xi) - F%(xi-l)] fori=1, ..., kand n 2 N,

As the PEGE is a function of Di and Ti n’ it can be expressed in terms
H

n
H
of the empirical functions Fn and F%. Specifically, on 2*, for any choice of

k, there is an N such that
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1 1
Fn(xi) “Fy (xi-l)

)

] for n 2 N,

o k

= Pa (%) = }j-(l' F(x
P 1=1 nt'i-1
Consequently, taking the limit of each side and using Proposition 3.2, we

have:

1~
Fa(*_q)

1 1
k [1 ) F“(xi)-Fn(x.
1

R )
P|lin B (x) = lin 1 ] fork =1, 2, ... |= 1.

N n+o j=

In exploring the asymptotic behaviour of the PEGE, therefore, we consider

the behaviour of the limiting sequence of the sequence

1

1 1
_F_(r [1 _ Fn(xi)-Fn(x._l)]

i=1 Fa(xg_p k=1

The proofs of the results that follow are omitted in the interest of

brevity., The most general model we consider is that in which nnly conditions

(Al) and (A2) are imposed. The following theorem identifies the limits of

: A o ©
b the sequences {P_(X=x, |X2x,) } . and {ﬁn(X>xk) boep fOrTk=1,2, ... and
h establishes that the sequences {Pn(X=xle2xk) bop and {pn(X>xk)}k=1 converge to

Gaussian sequences.

_’Ilm_eorem 3.3.
(i) With probability 1,

Fl o) -F ()
Flx )

lim Pn(X=xk|X2xk) = fork=1, 2, ... .
-0

(ii) With probability 1,

1 1
k F (x.)-F (x; ,)
lim P (0x) = T [1 - = i-1 ] for k = 1,2, ... .

N i=1

Flx;.p)




(iii) Let kl’ cens kM be M arbitrarily chosen integers such that

k1 < k2 < e <kM. Then

(P (X=x, |X2x, ),...,P (Xsx, [Xzx_ )) is AN(u*,>I%),
n k1 xk1 n ka ka n

where

=
*
1

= (P, /F( YseoesP /F( )).
ky xkl-l Ky ka-l

I* =

]
-
Q

*
e

q-1 r-1
1 (o ,+o +0 +0 )/
k 'k ki’kj kM+ki,kj ki,kM+kj kM+ki,kM+kj

q ‘r i=1 j=1

(Fx, _JFG _0)°
q T

r-1
, . = 2=
* P IO gk Ok ek koek, ) (FOY ROy D)
ri=l M q’1i M g*M 71 T q
1

az - -
* P Lok ok VFOy ) (Fly D
i=1 "i’'r MTivr T q

q

L /(f:(xk _l)f-'(xk ) forqsr.
Mg’ r q T

T -
S e T, . o, e, Lt LN p e
: .-' : .r'l.‘. PRI . L N . .

( n
.1 - - M
rl‘m = iZlqu’i(l-qu,i) forq=r,q=1, .... M,
1 7 1 M
- i — - = .o 0 M, = e 0 .
:1m i§1pkq’ipkr’1 forq<r,q=1, , T , ,
1§ 20 1 M
im ~ £ =14+l o, 24, T=1, ..., M
-;1m izlpkq-M’ier’i or q = 1 +1 ,» 2M,
1 7 2M
1im = Rl . (1-R .) forq=1, q=ML1, ..., .
neo 1 izl q-M'l( kq-M’l) k ’
1y 2M M+l
-lim = . f = Mel, ..., 24, T = Mel, .
lim ~ ilekq-M’i e or q,< T, q

., 2M.




(iv) Let k., ..., kM be M arbitrarily chosen integers such that

1’
k1 < k2 < .. < kM' Then
- A . 1.,
(Pn(X>xk1),-.-.Pn(X>ka)) is AN(p**,Z2**),
where
ky K
w = [E“"’i""("m”’""E“'Pi/"("i-l)) :
= dogtdaen,. .o M
r=1,...,M
k k k. k
[ bl T?(l P./F(x ))ﬁ'(l P./F(x; ,)) Zq Zro* JU(1-P,/E(x, ) (1-P_/F(x_ )]
g = -P. . -P. . - - _
ar oy i i-1 j=1 j 3-177 21 me1 £m 2 te-1 m “m-1

f for q < r.

It is evident from the theorem above that the PEGE is a strongly consis-

tent estimator of the underlying survival function if and only if

1 1
F (% )-F (X _4) P(X=x, )

(3.4) T et KX fork=1,2,....
F(xk-l) P(X2xk)

The theorems below give conditions under which this equality holds. As for
correlation, it is evident from the structure of the PEGE that any two elements
of the sequence {ﬁn(x>xk)}:=1 are correlated. Consequently the matrix I**
cannot be reduced to a diagonal matrix under even the most stringent conditions.

However it turns out that, under certain conditions, the asymptotic correlation

» -~ ~ - @ - —_— L3 * [
between pairs of the sequence {Pn(X-xleZXk)}k=1 is zero that is, T* is a
diagonal matrix.
The following theorem shows that independence between lifelength and

censoring random variables results in strongly consistent (and therefore

............

---------------
.................
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asymptotically umbiased) estimators. However any pair in the sequence

g = Z x » - - . - - . 3 -
{Pn(x xk|x xk)}k=1 is asymptotically correlated in this case. Since the
matrices I* and I** have the same form as in the theorem above, they are not

explicitly defined below.

Theorem 3.4.

Suppose

(i) the random variables Xi and Yi are independent for i = 1, 2, .

and
(ii) there is a distribution function H such that
)
lim — P(Y.sx,) = H(x,) fork=1, 2, ...
lim g L POYsx) = Hix
Then
. 1 k - -
(iii) F(x) = iZIP(X=xi)ﬂ(xi_1) and F(x) = POex)IA(X) fork =1,2, ....

(iv) With probability 1,

lim ﬁn(x>xk) = (‘;(ﬁ) for k=1, 2, ... .

n->o

~ [ : *1*
W) (Pn(x=xk1|xzxk1),...,Pn(X=kalX2ka)) is AN(u*,=I*),

where k1 < k2 < ees < kM are arbitrarily chosen integers and

g* = (P(X=x, [X2x. ),...,P(X=x, |X2x_)).
ki Tk kg ky

i) (B 0en ), B 00% ) s AN(™*,22%%)

where k1 < k2 < ... < kM are arbitrarily chosen integers and

prr o= (P(X>xk1)..--.P(X>ka)).

o Bae S gy 2
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A sufficient condition for (Al), (A2) and assumption (ii) of the
preceding theorem is that the censoring random variables be identically
distributed. In this case the failure rate estimators are assymptotically
independent and the matrix I** is somewhat simplified. The conditions of
the following corollary define the model of random censorship widely assumed

in the literature.

Corollary 3.5.

Suppoce
(i) the random variables Xi and Y.1 are independent for i =1, 2, ...
ancd
(ii) the random variables Yl' Y,, ... are identically distributed,
Then
ﬁli (iii) with probability 1, lim ﬁn(x>xk) = 8(xy) fork =1, 2, ...,
N
. . ~ ~ . 1
- - - ® vk
(iv) (Pn(X-xk IXZxk ),...,Pn(x-xk |X2xk )) is AN(p T ),
. 1 1 M M
- where

(P(X=x, |X2x, J,...,P(X=x, |X2x )),
%, "kl T, "kM

p y

»

{o* }
qr'q=1,...,M
3 r=l,... M

PiX=x, (Xax, JP(X>xy [X>xp )/F(x, ) forq =T
o = q q q q q

qr

{0

~ A . s . 1
) (Pn(X>xk1),...,Pn(x>xk )) is AN\E**,BE**),

4

where

............................
...........

........

forq 2 r.

...............
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(3]
[

*®

p* = (POOX ), POOX ),
1 M
2*% = logrdaar, ... M
r=1,... M
kq
- - I'Ep
q;; = p(x>xkq)P(X>xkr)izlp(x_xilxzxi)/LF(xi_l)P(x>xiIxzxi)3 for q s r.

Having dealt with the most restrictive case in which the lifelength and
censoring random variables are assumed to be independent, we now consider
rclaxing this condition. It turns out that independence between corresponding
lifelength and censoring random variables is not necessary for asymptotic
independence between pairs of the sequence of failure rate estimators: if the
censoring random variables are assumad to be identically distributed but not
necessarily independent of the corresponding lifelength random variables, then
the failure rate estimators are asymptotically independent, However both the
survival function and failure rate estimators are asymptotically biased. The

following corollary expresses these facts formally.

Corollory 3.6.

Suppose

(i) the random variables Yl, YZ’ ... are identically distributed.

Then

(ii) P, = P(Z=x,, 6=1) and ?(xk) = P(Z>x ) for k =1, 2, ...,

. A A . 1
- W= 3 *
(iii) (Pn(x_xkllxzxkl),...,Pn(x_kaIXZXkNR) is AN(u*,=2*) .

where

u* = (P /F(x, _.),...,P /E( )),
19 Ky kg1 Ky kg1

....................................

T YT
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o .o (o
- Br= Aot
j=l,...,M
(P (1P, /B(x, _))/(F(x, )% fori = j
- PRt AR W *x. -1 ori=j.
= of = i i i i
= ij
o 0 for i = j.
. A n . 1
(iv) (pn(X>xk1)""’?n(X>ka3) is AN(E**,HZ'*),
where
% _ Ky )
*k = - -
wr = | JT Py /RO ), TT QP /RO ) |
- *
Z** - {oj:’é}j:l,-..,hl
"_21,.».’1\1
s ;)r P /F k][: 1-p_/F E 286 2 F
o5t = [l - i/r(xi_l))n-!;l( Pl Pl ) L P/ LG )T (-P/Fxp 10
;? for j < £.
{ﬂ The corollaries above give sufficient (rather than necessary) conditions

Ekt for the two desirable properties of (i) consistency and (ii) asymptotic inde-
pendence between pairs of the sequence of failure rate estimators
{ﬁn(x=kuszk)}:=1. The final corollaries show that both of the conditions of
Corollary 3.5 are not necessary for these two desirable properties: the con-
ditions specified in these corollaries are not so stringent as to require that

corresponding censoring and lifelength random variables be independent (as in

Corollary 3.5), but rather that they be related in a certain way.
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Corollary 3.7.

if the rondom variables Yl, Yz, ... are identically distributed, then vith
probability 1, . _
lim Pn(X>xk) = G(xk) fort =1, 2, ...

n->c

if and only if

P(Yinkl)(:xk) = P(YinkIXZXk) fork=1,2, ...andi=1, 2, ...

Corollary 3.8.

Suppose

(i) the random variables Yl’ Yz, ... are identically distributed

and
(i) P(Yizxklx=xk) = P(Yi?_xk[)(z)ck) fork=1,2, ...andi=1,2, ... .

Then

"wv','z D gin Ain g d

s » - . 1.
(iii) (Pn(x=xk1|X2xkl),...,Pn(X=ka|X2ka)) is AN(B*,EL*),

where

= (P(X=x, |X2x, ), ..., P(X=x, |Xz2x )),
k k, ky' Ky

148
*
]

1
* o *
I* = {ofsdiog, ...
i1, ... M
o P =inlxzﬁk.)P(X>xk.]Xlxk.)/F(xk'_l) for i = j.
22 = 1 1 1 i
1)
0 for i 2 j,
(iv) (ﬁn(x>xk1)....,f’n(x>xk”)) is AN(u*,=2%%),
where
p** = (P(X>x, ),...,P(X>x, ),
- xkl ka
L** = {o*%},

i€ j=1,...,M
2=1,...,M

K,
ek v - o -~ .
ot P(X>xki)P(A>xk£) i=flp(x xilX?-xi)/[l-(xi_l)P(X>xi|X‘_xi)] for j < L,

..........................................................
.........................

.........................................

.......................................

..................




The last two corollaries are of special interest beczuse they deal with

consistency and asymptotic independence in the case of dependent lifelength
and censoring random variables -- a situation that is not generally considered
despite its obvious practical significance. Desu and Narula (1977), Langberg,
Proschan and Quinzi (1980) and Kitchin, Langberz and Proschan (1983) consider
the continuous version of the model specified in the last two corollaries.

The condition specifying the relationship between lifelength and censoriiig
random variables is in fact a mild one: rc-expressing it, we have the following
condition.

P(X=x, |X2x,,Y.2x,)  P(¥=x)
Xk Xk’ 1 k-.————'—-“k— tnr !(= 1, “y oo a(ld i=1, 2’ s e« .

Ef&axklxzxk,YiZXk) P(szk)

This condition specifies that the failure rate among thosc under observation
at any particular age is the same as the failure rate of the whole population
of that age, It is evident both intuitively and mathematically that this is

a findamental assumption inherent in the process of estimating a life distri-
bution from incomplete data: if this assumption could not be made, the data
available would be deemed inadequate for estimating the life distributioa.
Formally, it is the fact that the condition is both necessary and sufficient
for consistency that indicates that it is minimal for the estimation process.
It is clear, therefore, that the last two corollaries play an important role

in estimation in the context of a practical uode! more general than the statis-

tically convenient, but unneccssarily restrictive, model of random censorshin.

Section 4: The PEGE Cormpa~ed with Rivais.

In Scction 1 we motivate the construction of the PEGE by describing some
desivable properties of nonparametric suivival functioa esvimators aad then

seittioning thae the commonly use?’ estimatov cf Kaplan and Meier (i838) doces
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oot fare well in terms of these properties. We now compare the PEGE with the
Kaplan-Meier estimator,

We begin with the most obvious decsirable features of survival function
estimators and then consider statistical and mathematical properties., In
comparing the two estimators, we find that the issuc of continuity arises and
that the PEXE enters the comparison. The section ends with an example using
rezl data. The subsequent scction continues the comparison: we discuss the
results of simulation studies,

The Kaplan-Meier estimator (KME) of the survival function of the lifc-

length random variable X is defined as fcllows:

(1 for nl =0ortc«< tl’ n, 2 1.
i
. [ (1-D,/nF (t3)) fort, . St<t,,i=2,...,n,n 22
PXot) =4 j=1 3 DI i-1 i 1’71

n
1
-D,/nF_(t 2t , 2 1.
}];(1 J/nFn(tJ)) for t n, a,

To the prospective user of a survival function estimator, two fundamental
questions are, firstly, does the estimating function have the appecarance of a
survival function, and secondly, is it easy to computie?

Considering the second question first, we observe that calculating the
PEGE involves only marginally more effort than calculeting the KME. Therefore,
both estimators are accessible to users equipped with only hand calculators.

The first question is a deeper cne. If the sample is small or if there
are many ties among the uncensored observations in a large sample, the XME
has cnly a few steps and consequently appears unrealistic, The PEGE, iu

contrast, rerlects the continuity inherent in any life process by docreacing
(-4
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< a* every possible failure time, not only at the observed failure times. As

the number of distinct uncensored cbservations increases, both ths FEGE ~nd
the KME become smouther: the many steps of the KME do allew it the appearance

of a survival function, except possibly at the right extreme -- there is

a s 0w

e e ey

‘£

no way of extrapolating very far beyond the range of observation if the KME
is used, (There are several ways of cxtrapolatinyg from the PEGE.) At face
value, therefore, the PEGE is at least as attractive as the KME.

A relateC consideration is wnether the estimator providss u realistic
ectimate of the failure rate function. The KME, being a step function, does
not. The seriousness of this omission becomes more appareit when the KT
failure rate function is examined from a user's point of view: if an item cf
age ¢t has a (perhaps large) chance of failing a2t its age, thon claiming tiat
a slightly older (or slightly younger) itcm cannot fail at its age scems
:Q unrzascnable, particularly when it becomes evident that the claim is macde on
the grounds that none of the items on test happened to fail just after (or
just tofore) time t. Intuitively -- or {rom a lrequentist's point of view --
the very fact that one of the items on test failed at time t makes it less
likely that another itcm in the sample will fail soon aftexr { because che
-0 observed failure times should be scattered along the appropriate range
according to the distribution function. Cicarly, then, the gaps betweer
obsexrved failure times are a result of the fa:t that the sample is finite
and are not indicative of zero (or very small) failure rates.

The P2GZ, on the other hand, is coiistiucted so that a failure at tine t,
say, aifects the faiiure rate in the gap vefure t. Thus the PEGE compensates

ror the lack of observations at the possible (but unobsezved) failure times.

he resultant failiure rate fumction, beiny a step funciion, is stili naive, but
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i% goes at least take into account the continuity of lite processes and it does
provide reasonable estimates of the failure rates at all possible failure times.

A more aesthetic -- but none the less important -- issue is that of infor-
mation loss. Here the PEGE is again at an advantage. Although interval infor-
mation about the uncensored observations is used in spacing out the successive
values of the KME, the failure rate estimators utilize only ordinal infommaticn.
Moreover, the only information utilized from the censored observations is their
positioning relative to the uncensored observations. Thus the information loust
by the KME is of both the ordinal and interval types. In contrast, the PEGE
failure rate estimators use interval information frca all the obscrvations: in
particuiar, the positions of censored observations are taken into account
rrecisely. In terms of information usage, then, the PEGE is far more desirable
than the KME.

An apparently attractive feature of the KME is that its values are invar-
iant under monotone transformation of the scale of measurement. The PEGE is
not invariant under even linear t.ransformation. However, in the light of the
discussion about information loss, it is evident that the KMI's invariance, and
the PEGE's lack thereof, are results of their levels of sophistication rathex
than properties that can be used for comparison.

Having noted that the step function form of the KME is not pleasing, we
now point cut that it is also responsible for a statistical defect, namely,
that the KME tcnds to overestimate the underlying survival function and its
percentiles.  The fact that the KE consistently overestimates suggests that
its form is inappropriate. Some indications sbout the bias of the PEGE are
given by considering the relationship between the PEGE and the KME.

Under certain conditions (for example, if there are no ties among the
incensorad observations), the PEGE and the KME interlace: within each failure

interval, the PEGE crosses the YME once from above. This is not true in
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general, however. It turns out that the KME may have large steps in the
rrosence of ties, In the case of the PEGE, however, the effect of the ties
is damped and the PEGE decreases slowly relative to the XME. In generzl,
thercfore, it is possible to relate the PECE and the KME only in a onc-sided
fashion: specifically, the PEGE at any cbserved failure time is larger than

the XME at that time. Examples have been constimcted to show that, in generzal,

the PLGE cannot be bounded from above by the KM2, The following theorem

relates P (the PEGE) and P (the KME).

Theorem 4.1.
(1) P(X>ti) 2 P(X>ti) for i =1, ..., n;.

(i) If nFn(tj_l)/(nFn(tjél)'*Wj_l) < Dj/oj_1 for j =2, ..., 1,

whore wj denotes the number of censored observations at tj forj=1, ..., n,
then F(X>t.) < ﬁ(x>t;) fori=1, ..., n.

It is evident that the condition in (ii) is met if therc are no ties
among the uncensored observations: this is likely if the sample is small.
From the relationships in the theorem, we infer that the bias of the PEGE
is likely to be of the same order of magnitude as that of the KME. Further
indications about bias are given later.

Having considered some of the practical and physical features of the

PEGE and the KME, we turn briefly to asymptotic properties -- briefly because

the PEGE and the KME arc asymptotically equivalent -- that is,

: i D ar = 3 p e 1 =
PL(YK) 1lim P“(X>.\k) lim Pn(,Y. “k) l = 1,

n- w n-re
The practical implication of chis is thut there is little Jeason for stroiiyg

'ref2vence of either the PECE or the KnE -f the sample Is very large.

et
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.........................
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We new compaze the models assumed in using the KMZ and the PEGE. In
the many studies of tne KME, the most general model includes the assumption
ot independence between correspoiding life and ceasoriing randcm variables.
Vur most generai model deos not include this assumption. However this
difference is not important because ine assumption of independence is uscd
orly to facilitate {he derivatinn of cercaiin usvmptotic properties of the
KME: in fact, the definition of the KME does not depend cn this assumpiica,
and the KME and the PCGE ave asymptotically couivalenr uad:r the conditicas
of the psst gereral model of the PSGE. Thereinye this assumption is not
necessary for using the KME,

The other differesnce berween the modzls assuned is tYat the PEGE is
iesigned specifically for discrete iife scad censcring dictributions wpile
the Kaplan-Meiecy mecdel makes no siipulations 2bsuv the supporis uf tnese
cistributions. Hewever, distinguishing between ccatinuous and discrete
randon variablcs in this coniext is mercly a statisticel conventsicn --
in fuct, time to eccuirence of core event is zlways measured eloag a cen-
cinnous scale, aad the sat o f observable vezlues is alueys countable becanse
it is defined by the precision of measurzmert. Sincs the process of esti-
mating a life distribution recuirss measviemonts, it alwavs entaiis the
assumption of a discrete distributiczn: wietiier the sugrort of the estimator
is continuous or discrcie dopernds on the way the user perceives the scale
of measurament. In prectice, th2vefore, there are nc dificrences betwe:n
1ha models underlving the PEGL end the KME: the PE%GE is appropricte whenever

th

[

KME is, and vice versa.
Having poirted out that the PECE mey b2 used for cstimating cozliuvous
suoovival {unetions, and haviny iatroducc! #he PEXE as the ¢ -itinvous cowmiers

razt of the PLOL, ve ~empnre the oo [ii>t wa rot2 that the PEXE is ¢he

¥
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continuous version of the PEGE because the construction of each is based on
the assumption of constant failure rate between distinct observed failure
times. The forms of the estimators differ because of the difference in the
ways of expressing discrete and continuous survival functions in terms of
% failure rates. The PEGE and the PEXE are equally widely applicable since
a minor modification of the PEXE can be made to allow for ties. (This esti-
o mator is defined in Whittemore and Keller (1983).)
i:i The relationship between the PEGE and the modified PEXE, and their posi-
tioning relative to the KME, is summarized by the following theorem and the

succeeding relationship.

Theorem 4.2.

Let P**(X>t) denote the modified PEXE of the survival probability

P(X>t) for t > O,

(1) P(X>t) < P**(X>t) for t > O.

(ii) 1f nFn(tj_l)/(nFn(tj_l)-+wj_1) < Dj/Dj-l for j =2, ..., i, where

Wj denotes the number of censored observations at tj forj =1, ..., n
* % T 3 -

then P (X>ti) < P(X>ti_1) fori=1, ..., n,.

From Theorems 4.1(i) and 4.2(i), we have:

ﬁ(xni) < ﬁ(xni) < P**(X>ti) fori =1, ..., n;.

Consequently, if the condition in (ii) above is met (as it is when there are
no ties among the uncensored observations), both the PEGE and the PEXE inter-

lace with the KME: in each interval of the form (t tiJ' the PEGE and the

i-1°
PEXE cross the KME once from above. Practical experience suggests that the

.ﬂffrﬁll ——
e .

condition in (ii) above is not a stringent one: even though this condition

is violated in many of the data sets considered to date, the PEGE and the
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PCXE still interlace with the KME in the manner described. Another indication
from practical experience is that the difference between the PEXE and the PEGE
is negligible, even in small samples.

Finally, we present an example using the data of Freireich et al. (1963).
The data are the remission times of 21 leukemia patients who have received
6 MP (a mercaptopurine used in the treatment of leukemia). The ordered remis-
sion times in weeks are: 6, 6, 6, 6+, 7, 9+, 10, 10+, 11+, 13, 16, 17+, 19+,
20+, 22, 23, 25+, 32+, 32+, 34+, 35+, The PEGE and the KME are presented in
Figure 4.1. (Since the PEGE and the PEXE differ by at most .09, only the
PEGE appears.) The graphs illustrate the smoothness of the PEGE in contrast
with the jagged outline of the KME. The KME and the PEGE interlace even though
the condition in Theorems 4.1(ii)} and 4.2(ii) is violated. Since the PEGE is
only slightly above the KME at the observed failure times and the PEGE crosses
the KME early in each failure interval, the KME is considerably larger than the
PEGE by the end of each interval. This behaviouristypical. We infer that the
PEGE certainly does not overestimate: it may even tend to underestimate.

We conclude that the PEGE (and the modified PEXE) have significant advan-
tages over the KME, particularly in the cases of large samples containing many
ties and small samples. It is only in the case of a large sample spread over
a large range that the slight increase in computational effort required for
the PEGE might merit using the KME because the PEGE and the KME are likely to

be very similar.

T N T T e Ty rer-ry
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Section 5: Small Sample Properties of the PEGE.

In this section we give some indications of the small sample properties
of the PEGE by considering three simulatior studies. In the first study,
Kitchin (1980) compares the small sample properties of the PEXE with those

of the KME. In the second study, Whittemore and Keller (1983) consider the

small sample behaviour of anumber of estimators: we extract the results for
the KME and a particular version of the PEXE. In the third study, we make a
preliminary comparison of the KME and the PEGE. We expect the behaviour of
F:Z the piecewise exponential estimators to resemble that of the PEGE because

piecewise exponential estimators are continuous verions of the PEGE and, more-

over, niecewise exponential estimators and the PEGE are similar when the under-
lying life distribution is continuous.

The piecewise exponential estimator considered by Whittemore and Keller
is denoted éQd. It is constructed by averaging the PEXE failure rate function

estimator with a variant of the PEXE failure rate function estimator -- that

is, §Q4 is the same as the PEXE except that the PEXE failure rate estimators
Ai, ceny A;l are replaced by the failure rate estimators A}, ..., A;l defined
as follows:
Ay = '4(‘5";-1) for i =1, ..., ny,

where

A; = D,/Total time on test in (ti_l.ti] fori=1, ..., n,

A; = Di/TotaI time on test in tti’ti+1) fori=20, ..., nl-l,
Dn /Total time on test in [tn ,o) if max Zi >t .
2= 1 1 1<izn 1
™

0 otherwise.
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Although Whittemore and Keller include in their study the two estimators
F. and . constructed from AT, vve, AT and AT, ..., A respectively, they
Q1 QZ 1 n, 1

|

present the results for the hybrid estimator ﬁQ alone because they find that
" 4

FQI tends to be negatively biased and §Q2 tends to be positively biased.

The same model is assumed in all three studies. The model is that of
random censorship: corresponding life and censoring random variabies are inde-
pendent and the censoring random variables are identically distributed. Whitte-
more and Keller generate 200 samples in each of the 6 x 3x4 = 72 situations
that result from considering six life distributions (representing failure
rate functions that are constant, linearly increasing, exponentially increasing,

decreasing, U-shaped, and discontinuous), three levels of censoring

(P(Y<X) = 0, .55, .76), and four sample sizes (n=10, 25, 50, 100). Kitchin
obtains 1000 samples in each of a variety of situations: he considers four
ili life distributions (Exponential, Weibull with parameter 2, Weibull with para-
meter %, and Uniform), three levels of censoring (P(Y<X) = 0, .5, .67), and

four sample sizes (n=10, 20, 50). Kitchin's study is broader than that of

n Whittemore and Keller in that Kitchin considers Exponential, Weibull

{l and Uniform censoring distributions while Whittemore and Keller consider only
: Exponential censoring distributions. Kitchin apparently produces the greater
4. variety of sampling conditions because his results vary slightly according to
[ the model, while Whittemore and Keller find so much similarity in the results
! from the various distributions that they record only the results from the

i‘_ - Weibull distribution.

The conclusions we draw from the two studies are similar. Regarding mean

squared error (MSE), both Kitchin and Whittemore and Keller find that, in

general :

..........................................................
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(1) The MSE of the exponential estimator is smaller than that of the

KME.

(ii) As the level of censoring increases, the increase in the MSE is

smaller for the exponential estimator than for the KME.

Kitchin reports that (i) and (ii) are not always true of the PEXE and the KME:
the exceptional cases occur in the tails of the distributions.

The conclusions about bias are not so straightforward. Whittemore and
Keller find that the PEXE tends to be negatively biased while Kitchin reports
that the bias of the PEXE is a monotone increasing function of time: examining
his figures, we find that the bias tends to be near zerc at some point between

h and 60th

the 40° percentiles except when the life and censoring distributions
are Uniform. (In this case, the bias is positive only after the Qoth percentile.)
We conclude that Whittemore and Keller merely avoid detailed discussion of bias.
Regarding the hybrid estimator, we find in the figures recorded some suggestions
of the tendencies observed in the PEXE -- specifically, monotone increasing bias
and a tendency for underestimation when the sample size is small and censoring
is heavy. Whether this behaviouris typical of the PEGE also remains to be seen.

In considering the magnitude of the bias of the estimators, we find the
following.

(i) Both Kitchin and Whittemore and Keller report that the bias of the
KME is negligible except in the right tail of the distribution and in the case
of a very small sample (n=10) and heavy censoring.

(ii) The PEXE is considerably more biased than the KME.

~

(iii) The bias of F, is negligible except in the case of a very small

QY
sample and heavy censoring.
(iv) The bias of each estimator increases as the censoring becomes heavier

and it decreases as the sample size increases.
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In view of these two studies, we conclude, firstly, that the PEGE is
likely to compare favourablywith the KME in terms of MSE, and secondly, that
the PEGE is likely to be considerably more biased than the KME. We expect

that the discrete counterpart of £ performs well in terms of both MSE and

Q
bias. Since the bias of this estim:tor is likely to be small, adjustment for
its presumed tendency to increase monotonically is deemed an unnecessary
complication.

In the pilot study we generate three collections of data, each consisting
of 100 samples of size 10, from independent Geometric life and censoring dis-
tributions. In each case the life distribution has parameter p = exp(-.1).
The censoring distributions are chosen so as to produce three levels of censoring:
setting p = exp(-1), where A = ,00001, .1, .3, yields the censoring probabilities
P(Y<X) = 0, .475, .711 respectively.

The conventions followed for extrapolation in the range beyond the largest

observed failure time are as follows:

P(X>tn ) for tn <k ¢<s

e
Flxok) = 1 1 2
0 fork >s 2t_.
n, M
R . k-tn
P(X>k) = P(X>tn1)(1-qn1) 1 fork 2 tnl.

This definition of the KME rests on the assumption that the largest observation
is uncensored, while the definition of the PEGE results from assuming that the
failure rate after the largest observed failure time is the same as the failure

rate in the interval (tnl-l’ tnIJ.

Our conventions for extrapolation differ from those of Kitchin and of
Whittemore and Keller. Consequently our results involving right-hand tail
probabilities differ from theirs: a preliminary indication is that our extra-

polation procedures result in estimators that are more realistic than theirs.

AR |
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Although the size of the study precludes reaching more than tentative
conclusions, we observe several tendencies,

Tables 1(3), 2(a) and 3(a) contain the estimated bias and mean squared
error (MSE) for the KME and the PEGE of P(X>k) for k = Ep’ where Ep is the
pth percentile of the underlying life distribution and p = 1, 5, 10, 20, 30,
40, 50, 60, 70, 80, 90, 95, 99. From these tables we make the following
observations.

(i) The MSE of the PEGE is generally smaller than that of the KME, The
exceptions occur in the right-hand tail of the distribution under conditions
of moderate and heavy censoring.

(ii) The MSE of each estimator increases as censoring increases.

(iii) The disparity in the MSE of the two estimators becomes more marked
as the censoring increases -~ that is, the MSE of the PEGE increases by rela-
tively little as the censoring increases, except in the right-hand tail.

(iv) The difference in the MSE of the two estimators is smallest near the
median of the distribution.

(v) Both the KME and the PEGE generally exhibit negative bias: the mag-
nitude of the bias of each estimator is greatest around the median of the
distribution.

(vi) The magnitude of the bias of the KME is consistently smaller than
that of the PEGE only when there is no censoring. Under conditions of moderate
and heavy censoring, the KME is less biased than the PEGE only at percentiles
to the left of the median: to the right of the median, the PEGE is considerably
less biased than the KME.

(vii) As censoring increases, the magnitude of the bias of the KME increases

faster than does that of the PEGE.
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Tables 1(b), 2(b) and 3(b) contain the estimated bias and MSE for the
Kaplan-Meier (KM) and piecewise geometric (PG) estimators of the percentiles
Ep' p = 1, 5, 10, 20, 30, 40, 50, 60, 7-, 80, 90, 95, 99. From these tables
we make the following observations,

(i) With a few cxceptions, the PG percentile estimator is less biased
than the KM percentile estimator.

(ii) Both estimators tend to be negatively biased.

(1ii) At each level of censoring, the bias of the PG percentile estimator

is negligible for percentiles smaller than the 70th, and it is acceptably
small for larger percentiles, except perhaps the 99th percentile. In contrast,

the KM percentile estimators are almost unbiased only for percentiles smaller

than the 60th: to the right of the 60th percentile the bias tends to be very
much larger than that of the PG estimators, This tendency is particularly
h noticeable in the case of heavy censoring.

(iv) The MSE of the PG percentile estimator is smaller than that of the
KM percentile estimator only in certain ranges, viz: p < 70 for heavy censoring,
'ii p < 40 for moderate censoring, and 5 S p < 95 for no censoring. Since the PG
percentile estimator is almost unbiased outside these ranges, the large MSE

must be the result of having large variance.

Y

%.~ On the basis of the observations involving the survival function esti-
mators, we conclude that the small sample behaviour of the PEGE resembles that

1 of the PEXE: specifically, when there is little or no censoring, the PEGE

é;‘ . compares favourably with the KME in terms of MSE but not in terms of bias. We
expect that this is true irrespective of the level of censoring when the
sample size is larger. It remains to be seen whether inversion of this general

éj“ behaviour is typical when the sample size is very small and censoring is heavy,

. & b » v
T
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It is evident that increased censoring affects the bias and the MSE of PEGE
less than it affects the bias and the MSE of the KME.

Our conclusions about the percentile estimators are even more tentative
because of the lack of results involving the behaviour of percentile estimators.
The fact that the PG percentile estimator is almost unbiased even in the pre-
sence of heavy censoring, and even as far to the right as the 95th percentile,
is of considerable interest because the KM extrapolation procedures are clearly
inadequate for estimating extreme right percentiles.

Regarding the MSE, we note that, under conditions of moderate or heavy
censoring, any estimator of the larger percentiles is expected to vary consi-
derably because there are likely to be very few observations in this range.

The ad hoc extrapolation procedure for the KM is expected to cause the estimators
of the extreme right percentiles to exhibit large negative bias and little
variation. In view of these considerations and the accuracy of the PG percen-
tile estimators, we conclude that the fact that the MSE of the PG percentile
estimator of the larger percentiles is greater than that of the KM percentile
estimator is not evidence of a breakdown in the reliability and efficiency of
the PG percentile estimator.

The general indications of our pilot study are that the PEGE and the
discrete version of §Q4 are attractive alternatives to the KME. In view of the

resemblance between the properties of the PEGE and those of the PEXE, the

3
Q
almost unbiased and to be not only more efficient than the KME but also more

results for portend well for the new discrete estimator: we expect it to be
stable under increased censoring. Moreover, we expect the corresponding
percentile estimator to have these desirable properties also because it is

likely to behave at least as well as the PG percentile estimator.

..............
...........
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The properties involving relative efficiency are of considerable impor-
tance because relative efficiency is a measure of the relative quantities of
information utilized by the estimators being compared. This interpretation

of relative efficiency, and the fact that heavy censoring is often encountered

in engineering problems, makes F. and its discrete counterpart even more

Q

attractive.
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Table 1. Results of Pilot Study Using 100 Samples of Size 10, Geometric
(r=exp(--1)) Life Distribution, Geometric (p=exp(--00001)) Censoring
Distribution and P(Y<X) =0,

Estimated MSE

Percentile PEGE KME PEGE KME
1 ~.0184 -.0018 .0078 .0101
5 -.0184 -.0018 .0078 .0101
10 ~-.0137 .0123 .0118 .0145
20 ~.0172 .0092 0161 .0182
30 ~.0253 -.0053 .0194 .0225
40 ~-.0293 -.0118 .0255 .0279
50 ~.0351 -.0196 .0271 .0278
60 ~.0347 -.0159 .0223 .0257
70 ~.0318 ~.0185 .0176 .0212
80 ~.0283 -.0187 .0108 .0133
90 -.0199 -.0167 .0047 .0060
95 -.0096 -.0028 .0028 .0049
99 .0029 -.0011 .0006 .0009

(b) Percentile Estimators.

Estimated Bias

Estimated MSE

Percentile PEGE KME PEGE KME
1 .00 .63 .00 1.63
5 .21 .63 .35 1.63
10 -.21 -.37 1.69 1.37
20 -.08 -.32 3.00 2.38
30 .28 -.10 4.48 3.88
40 -.16 -.79 6.20 5.71
50 .53 -.08 9.57 9.72
60 -.62 -1.31 13.70 14.37
70 -1.35 -2.28 20.43 22.82
80 -1.87 -3.34 35.23 35.96
90 -2.29 -4,87 82.53 95,37
95 -2.20 -1.53 130.22 140.17
99 -5.01 -18.53 577.47 481.19
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Tahle 2. Results of Pilot Study Using 100 Samples of Size 10, Geometric
(p=exp(--1)) Life Distribution, Geometric (p=exp(--1)) Censoring Distribution
and P(Y<X) = ,475,

(a) Survival Function Estimators.

Estimated Bias Estimated MSE
Percentile PEGE KME PEGE KME

1 -.0223 -.0018 .0077 .0101

5 -.0223 -.0018 .0077 .0101

- 10 -.0207 .0106 .0124 .0157
o 20 -.0215 .0094 .0170 .0208
- 30 -.0282 -.0042 .0244 .0300

" 40 -.0432 -.0037 .0407 .0502

[ 50 -.0509 -.0230 .0475 .0601
] 60 -.0564 -.0442 .0430 .0634
: 70 -.0553 -.0800 .0333 .0603
80 -.0368 -.0707 .0229 .0413

90 -.0060 -.0590 .0124 .0151

95 .0082 -.0401 .0082 .0049

99 .0149 -.0091 .0033 .0001

(b) Percentile Estimators.

_Estimated Bias Estimated MSE
Percentile PEGE KME PEGE KME
1 .00 .80 .00 3.36
5 .19 .80 .33 3.36
10 -.34 -.20 1.66 2.76
20 -.09 .08 3.69 5.36
30 .38 .80 7.40 9.84
40 .10 .64 12.62 17.24
50 .77 1.43 20.97 25.21
60 -.20 .62 34.24 37.26
70 -.67 -1.44 64.85 36.28
80 -.88 -2.73 128.02 52.21
90 -1.23 -8.92 302.31 121.66
95 -.60 -14.92 561.06 264.70
99 -2.30 -31.92 1497.30 1060.98

.....................................................
.......................................................
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Table 3.

-0 bution and P(Y<X) = .711.

{a) Survival Function Estimators.

Tal Results of Pilot Study Using 100 Samples of Size 10, Geometric
(p=exp(-+1)) Life Distribution, Geometric (p=exp(--3)) Censoring Distri-

-~ Estimated Bias Estimated MSE

. Percentile PEGE KME PEGE KME
_ 1 -.0230 -.0018 .0077 .0101
- S -.0230 -.0018 .0077 .0101
- 10 -.0370 .0033 L0171 .0185
: 20 -.0582 -.0273 .0301 .0508
: 30 -.0714 -.0479 .0437 .0704
40 -.1150 -.1011 .0705 L1257
50 -.1232 -.1443 .0709 .1382
60 -.1006 -.2421 .0594 L1273
70 -.0702 -.2286 .0456 L0711

80 -.0347 -.1775 .0321 .0341

90 .0032 ! -.0907 .0187 .0082
95 .0173 -.0498 .0125 .0025

99 .0206 -.0091 .0043 .0001

{b) Percentile Estimators.
Estimated Bias Estimated MSE

Percentile PEGE KME PEGE KME

1 .10 .87 .52 3.27

5 .24 .87 .68 3.27

10 -.41 -.13 1.37 2.53

20 -.08 .52 3.22 7.86

30 .29 .76 7.19 8.82

40 -.20 -.10 15.16 9.56

50 .48 .16 28.06 10.86

60 -.47 -2,38 50.99 16.66

70 -.78 -4.91 90.72 36.07

80 -1.11 -8.54 167.67 84.44

90 -1.68 ~15.53 357.58 252.63

95 -1.25 -21.,53 619.71 474 .99

99 -3.34 -38.53 1508.06 1496.01
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